Question number	Answer	Notes	Marks
1 (a)	B (hit the walls of the container harder)		1
(b)	 (average) KE (of particles) decreases (as the temperature falls); AND one of (because) they move slower; idea that at 0 K the particles have no kinetic energy; idea that at 0 K the particles are not moving; 	ignore • ' particles freeze' • KE is lost allow • 'it' for average KE • absolute zero for 0 K	2
1 (c) (i)	300 K;		1
(c) (ii)	both temperatures seen in Kelvin; Substitution; (Rearrangement and) Evaluation;e.g. $210\ 000 = P_2$ seen $300\ 354$ this would get 2 marks if seen $300\ 354$ $210\ 000\ x\ 354$ P_2 this would get 2 marks if seen 300 $(P_2) = 250(kPa)$ this is 3 marks	 no mark for equation as it is given on page 2 allow <u>210 000</u> = P₂ for 1 mark 27 81 630 (kPa) for 2 marks bald answer 248 (kPa) for 3 marks answers which round to 250 Power of Ten error (POT) =-1 	3

(Total for Question 1 = 7 marks)

Question number	Answer	Notes	Marks
2 (a) (i)	Power (rating) or watt(s);		2
	Rate of energy transfer / joule per second / J/s ;	Ignore equation from p2: <u>energy (transferred)</u> time (taken)	
(ii)	Any two of MP1 Idea of a fault causing a hazard; MP2 Idea that current goes to Earth / not to user; MP3 Idea of fuse action, e.g. blows /melts / breaks circuit;	Ignore: current surge, fire Allow: • prevents electrocution / shock • flow of charge as current • current to ground Ignore: electricity / energy goes to earth	2
	MP4 idea of a low resistance path;	Allow case at earth potential	
(b) (i)	Agree / disagree - no mark Any three of MP1 Statement of an appropriate equation e.g. power = current x voltage;MP2 At least one appropriate current value calculated, e.g. 2.92 (A) or 0.13 (A);MP3 Idea that fuse rating must be more than working current;MP4 EITHER Idea that 2.92 A is close to 3A, making 3A fuse a poor choice for soldering iron 'B'; OR Idea that 3A is much larger than 0.13 A, making 3A fuse a poor choice for soldering iron 'A'	Allow abbreviation and rearrangements e.g. P=IV, I=P/V Ignore s.f. 30 ÷ 230 = 0.13 (A) 70 ÷ 24 = 2.9 (A) Allow 70 ÷ 230 = 0.30 (A) Allow reverse arguments, e.g. "lower value fuse would melt"	3

(ii)	Any three of	May be shown on a labelled diagram Ignore equations	3
	MP1 primary AND secondary (coils); MP2 (soft) iron core;	Allow input and output (coils) Ignore: magnet	
	MP3 primary/input (coil) has more turns;	 Allow: reverse argument clear indication of relative turns on diagram (judge by eye) appropriate numbers 	
	MP4 further structural detail e.g. insulated wire, core laminations;		
	Total for guestion 2 = 10	marks	

Total for question 2 = 10 marks

	Question numbe		Answer	Notes	Marks
3	(a)	(i)	90 (K)		1
		(ii)	Any three of MP1 Idea that particles/molecules move apart;	Ignore: molecules vibrate Allow: molecules spread out, take up more space	3
			MP2 Idea that particles/molecules gain (kinetic) energy;	May be shown on labelled diagram Allow: idea of moving faster Ignore : 'move more'	
			MP3 Idea that particles/molecules move more freely;	Allow bonds break Ignore unqualified 'move more'	
			MP4 Idea that particles/molecules leave the liquid;	Allow escape Ignore evaporate	
	(b)	(i)	Any two of MP1 radiation / infrared; MP2 Idea of reflection;	Allow IR	2
			MP3 Idea of little/no absorption; MP4 Idea of poor emission;	Allow bad radiator	
		(ii)	Any two of (in a vacuum there are) no atoms/molecules/particles; so no/poor conduction;	Allow: no 'medium' no 'material' There are no molecules to conduct	2
			so no/little convection (currents);	2 marksThere are nomolecules to convect2 marks	

(c)	Any two of MP1 Idea that there is cold gas/air/oxygen just above the liquid (surface);	Ignore "heat rises"	2
	MP2 Idea that the gas/air/oxygen in the room is warmer;		
	MP3 Idea that convection currents in air (above liquid surface) unlikely;	Allow: warm air won't fall, cool air won't rise Ignore density arguments	
	MP4 Idea that (evaporated) oxygen /air / gas would insulate the surface;	Allow: gas is a poor conductor	
	MP5 Idea that oxygen/gas would build up pressure in a sealed vessel;	Allow: flask would burst if it had a lid	

Total for question 3 = 10 marks

Question number		Answer	Accept	Reject	Marks
4 (a)	(i)	Work done = force x distance (in direction of force);	$W = F \times d$ d = W / F F = W / d		1
	(ii)	Substitution (in correct equation); Answer; e.g.: W = 1.7 x 0.46 = 0.78 (J);;	0.782		2
	(iii)	Response must match 7a(ii) ; e.g. 0.78	Accept word answer e.g. "the same"		1
(b)	(i)	KE is zero /less / decreased;	No KE The KE is transferred (to other forms)		1
	(ii)	Centre of gravity is lower;	Centre of mass is lower Height is lower <u>and</u> reference to mgh		1

Total 6 marks